If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x)^2+(6x)^2=122^2
We move all terms to the left:
(5x)^2+(6x)^2-(122^2)=0
We add all the numbers together, and all the variables
11x^2-14884=0
a = 11; b = 0; c = -14884;
Δ = b2-4ac
Δ = 02-4·11·(-14884)
Δ = 654896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{654896}=\sqrt{59536*11}=\sqrt{59536}*\sqrt{11}=244\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-244\sqrt{11}}{2*11}=\frac{0-244\sqrt{11}}{22} =-\frac{244\sqrt{11}}{22} =-\frac{122\sqrt{11}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+244\sqrt{11}}{2*11}=\frac{0+244\sqrt{11}}{22} =\frac{244\sqrt{11}}{22} =\frac{122\sqrt{11}}{11} $
| 5/3x1/3x=131/3+8/3x | | 6-4x=1/3(-12x+18) | | 11x-29=8x+10 | | 8+7b=6b+3b | | 3(3x+2)=2(4x-1) | | -6=-4w+12/12 | | 8x-4=4x-4+56 | | x^2-1.25x-2=0 | | 5x2-13=13 | | .8+5x=−2 | | 0=12x^2-64x+153 | | 25=c-17 | | 15x+2x+5+90=180 | | V=1/3r | | 2x-14=1+3x | | 5(x-3)=3(2x+5) | | 45+2x=47 | | z/5-6=3.25 | | -3(2b-5)=13-6b | | 5x-5+4x+6+80=180 | | 4x−6=57-3x | | 5x+1344x=6 | | (1/5x)+(2/10x)=(4/5) | | X²+10X+m=0 | | -4(w+5)+7=-33 | | -2x3-x7=17 | | 4-x+1=120 | | -6+1/3x-7-1/6x=-13+1/6x | | -76=10x-6 | | 33/8x=27 | | 5v+7=4v+3 | | 14+3x=5x+23 |